Research Article

An improved method for the radiosynthesis of [¹¹C]*d-threo*-methylphenidate

A. R. Studenov^{1,*}, S. Jivan¹, J. Lu¹, M. J. Adam¹, S. B. Jensen², J. P. O'Neil³ and Y.-S. Ding⁴ ¹*TRIUMF*, 4004 Wesbrook Mall, Vancouver, BC, Canada V6T 2A3 ²*PET-Centre*, Åarhus University Hospital, Norrebrogade 44, DK-8000 Åarhus C., Denmark ³ Lawrence Berkeley National Laboratory, One Cyclotron Road, #55-121, Berkeley, CA 94720, USA ⁴ Department of Chemistry, Brookhaven National Laboratory, Upton, NY 11973, USA

Summary

An improved method to remove the 2-nitrophenylsulfenyl protecting group in the conventional radiosynthesis of the PET radiotracer [C-11]*d-threo*-methylphenidate was developed. The method uses the nonvolatile reagents sulfuric acid and L-cysteine. In addition it was demonstrated that solid phase extraction (SPE, C18 and ion exchange) can be used to purify the final product instead of semi-preparative HPLC. Copyright © 2006 John Wiley & Sons, Ltd.

Key Words: [C-11]methylphenidate; dopamine transporter; SPE purification

Introduction

Changes in the dopamine system are observed in a number of diseases such as Parkinson's disease, schizophrenia and substance abuse.¹ The conventional method for the radiosynthesis of a radiotracer for the dopamine transporter, [¹¹C]*d-threo*-methylphenidate ([¹¹C]MP),² producing adequate quantity and quality of the radiotracer, has been successfully used for over a decade. Our research was aimed at making the radiosynthesis safer for radiochemists, simpler, faster and more reliable. The original reference² and our research suggests that the synthesis of [¹¹C]MP by direct ¹¹C-iodomethylation of ritalinic acid is impractical. Alternative ¹¹C-methylation agents such as

*Correspondence to: Andrei R Studenov, TRIUMF, PET Group, 4004 Wesbrook Mall, Vancouver, BC, Canada V6T 2A3. E-mail: studenov@triumf.ca

Contract/grant sponsor: Canadian Institutes of Health Research Contract/grant sponsor: TRIUMF

Copyright © 2006 John Wiley & Sons, Ltd.

 $[^{11}C]methyl \ triflate^3$ and $[^{11}C]CH_3OH/BF_3-Et_2O^4$ were also unsuccessfully tried.

The use of a *t*-Boc-protecting group-containing precursor and dilute aqueous HCl for deprotection was proven feasible but low yielding. However, substitution of HCl-diethyl ether with concentrated H_2SO_4 and mercaptoacetic acid with L-cysteine, while retaining the protecting 2-nitrophenylsulfenyl-(Nps) group, worked well and eliminated the disadvantages associated with the volatile reagents. To accelerate [¹¹C]MP purification, a previously developed⁵ solid phase extraction (SPE) system utilizing two Sep-Paks was considered for the final product purification as an alternative to HPLC.

Experimental

Chemicals were purchased from Aldrich or Across. [¹¹C]CH₃I was produced using gas-phase method from in-target generated [¹¹C]CH₄. The final solution of radiotracer was filtered through sterile AcrodiscTM filter (0.22 µm, 25 mm, Pall Corp.). [¹¹C]MP quality control was accomplished using Waters HPLC with Nova-Pak, C18, 5 µm, 150 × 4.6 mm column; 0.17 M ammonium formate – 30% acetonitrile eluent at 1.5 ml/min; UV 225 nm; t_R 2.5 min.

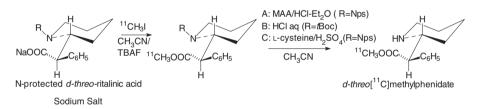


Figure 1. Radiosynthesis of $[^{11}C]d$ -threo-methylphenidate; MAA-mercaptoacetic acid

[¹¹C]MP radiosynthesis²

 $[^{11}C]CH_3I$ in a stream of helium was bubbled through the cooled (aluminum cylinder, 5–10°C) solution of MP precursor [*d-threo-N*-(2-Nitrophenylsulfenyl) ritalinic acid sodium salt, 0.3 mg, 0.8 µmol, JML Biopharm, Vancouver, BC, Canada] and tetrabutylammonium fluoride (1.3 µmol) in anhydrous acetoni-trile (0.4 ml). The mixture was heated (oil bath, 80°C, 5 min), and a solution of 5.5–8.5 mg (45–70 µmol) of L-cysteine and 17 µl (340 µmol) of concentrated sulfuric acid in 0.4 ml of acetonitrile was added via a remote addition line. After stirring at room temperature for 3 min, the reaction was quenched with 3 ml of saturated sodium tetraborate. The solution was loaded onto C18 Light Sep-Pak (Waters), and the cartridge was washed with water (4 ml) (Figure 1).

HPLC Method

[¹¹C]MP was eluted (methanol, 2 ml) from the Sep-Pak into the 2-ml injector loop. The product was purified by HPLC (Phenomenex, Partisil, 10 µm, 250×9.4 mm column; 0.17 M ammonium formate–25% acetonitrile eluent at 5 ml/min; UV 254 nm; $t_{\rm R}$ 10–12 min). Collected product fraction was rotary evaporated (60–70°C); ethanol (5 ml) was added and evaporated to remove traces of acetonitrile, and the radiotracer was reconstituted in saline (10 ml). The decay corrected radiochemical yield with respect to [¹¹C]CH₃I was 50 ± 15% (n=6) 45 min after EOB; radiochemical purity was >99%; and EOS specific radioactivity, 8 ± 5 (n=6) Ci/µmol.

SPE Method

The solution of product, eluted from C18 Sep-Pak with ethanol (2 ml), was mixed with water (20 ml) and passed through Waters CM Sep-Pak. After the cartridge was washed with water $(2 \times 5 \text{ ml})$, $[^{11}\text{C}]\text{MP}$ was eluted with saline (10 ml). The decay corrected radiochemical yield with respect to $[^{11}\text{C}]\text{CH}_3\text{I}$ was $45 \pm 15\%$ (n = 4) after 45 min of radiosynthesis; radiochemical purity was >99%, and EOS specific radioactivity was 1.8 ± 0.5 (n = 4) Ci/µmol.

Results and discussion

Although ritalinic acid has two potential sites for ¹¹C-methylation, it has been shown that chemoselective ¹¹C-methylation can, in principle, be achieved by changing the reaction solvent or ¹¹C-methylating agent.^{4,6–8} In our case, however, no formation of [¹¹C]MP was observed in the reaction of ritalinic acid with carbon-11- methyl iodide, methyl triflate and CH₃OH/BF₃-Et₂O. In the conventional radiosynthesis a mixture of HCl-diethyl ether and mercaptoacetic acids is required for deprotection of the Nps- group;² both reagents are volatile irritants, and HCl-diethyl ether is unstable upon storage. The use of *t*-Boc as a protecting group in the radiosynthesis of [¹¹C]MP afforded the use of a milder deprotection system (1 M aqueous HCl). However, this resulted in a 30% lower radiochemical yield compared to the original radiosynthesis.

Another proposed improvement to the radiosynthesis was the development of a better method to remove the Nps-protecting group in the conventional radiosynthesis. These attempts have proven successful; a new deprotection system using a solution of nonvolatile L-cysteine and sulfuric acids in acetonitrile avoids the disadvantages associated with HCl-diethyl ether/ mercaproacetic acid without sacrificing radiochemical yield.

Due to the unlikely formation of *l-erythro*-[¹¹C]MP, the final product can be purified using the Sep-Pak method;⁵ completion of QC, however, would be required prior to administration. Meanwhile, preparative HPLC indicates, in

the course of the radiosynthesis, whether significant amount of *l-erythro*-[¹¹C]MP is formed and separates these two diastereomers. Another disadvantage of the Sep-Pak radiosynthesis is a requirement for a dedicated setup as opposed to the use of universally applicable radioHPLC with multi- column/eluent selectors. An initial believe in a shorter time of Sep-Pak radiosynthesis was deceptive, especially considering the added time for QC release.

Conclusions

Use of the L-cysteine/ H_2SO_4 deprotection system with the conventional radiosynthesis proved to be advantageous compared to the mercaptoacetic acid/HCl-diethyl ether method. Our other experiments showed that a one-step conversion of ritalinic acid into [¹¹C]methylphenidate is not practical, while the search for an alternative protective group to the currently used Nps-group is nontrivial.

Acknowledgements

We are thankful to Canadian Institutes of Health Research and TRIUMF for financial support, P. Piccioni for operating the cyclotron and T. J. Ruth for reviewing our manuscript.

References

- 1. Volkow ND, Fowler JS, Gatley SJ, Logan J, Wang GJ, Ding Y-S, Dewey S. J Nucl Med 1996; **37**: 1242–1256.
- 2. Ding Y-S, Sugano Y, Fowler JS, Salata C. J Label Comp Radiopharm 1994; 34: 989–997.
- 3. Jewett DM. Int J Rad Appl Instrum [A] 1992; 43: 1383-1385.
- Ackermann U, Tochon-Danguy HJ, Scott AM. J Label Comp Radiopharm 2004; 47: 523–530.
- 5. Adam MJ, Lu J, Huser J, Ding Y-S. J Label Comp Radiopharm 1997; 40: 259.
- 6. Studenov AR, Wegner AM, Ding YS. J Label Comp Radiopharm 2001; 44: 425–436.
- Brown-Proctor C, Snyder SE, Sherman PS, Kilbourn MR. Nucl Med Biol 2000; 27: 415–418.
- 8. Berridge MS, Burnazi EM. J Label Comp Radiopharm 2001; 44: 859-864.